Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Progetti

SCHIFANELLA R. US ARMY "DTeam2vec: modeling team performance using representational learning on temporal graphs"

Progetto
What makes a team effective has been widely studied across disciplines and applicative contexts. Several factors such as communication, coordination, distinctive roles, interdependent tasks, shared norms, personality traits, and diversity have been found to be relevant aspects. Yet, our understanding of teams as evolving systems of interacting individuals as well as of the relation between team composition and performance is still partial. The heterogeneity of interaction patterns in co-present, virtual or distributed teams and the widespread adoption of multi-team and multilevel systems in which nested groups cooperate to perform functions at different scales, add additional challenges to capture the complexity of modern organizations. In contrast, the large majority of the relevant literature mainly dealt with self-reported surveys, in-depth interviews, or observations in scenarios with limited complexity, scale, scope, and general applicability. Recently, the access to digital traces on human activities is providing unprecedented opportunities to mine the emergent behavior of large-scale, loosely coupled, teams and task-oriented multilevel groups. In this context, machine learning pipelines were proposed to predict team performance that however was mainly i) focused on specific aspects while overlooking the holistic picture underpinning team dynamics ii) used a static snapshot to characterize composition and interactions and iii) adopted hand-designed features that often fail to capture the complexity of high-order functional relationships. To tackle these issues, this project aims to provide a novel methodological framework – called Dteam2vect – to predict team performance leveraging representational learning on temporal graphs. Our approach is based on the hypothesis that graphs embeddings offer a natural way to infer high-order representations of interacting systems, and state-of-the-art embedding methods can be extended to account for the temporal dynamics introduced by teams that continuously form, evolve, and grow over time. Since representational learning comes with a well-known trade-off between accuracy and interpretability of the prediction outcome, our approach aims at carefully exploring the dimensions of explainability and underlying biases, to ensure that results are not a mere effect of the statistical tendencies of benchmarks.
  • Dati Generali
  • Aree Di Ricerca
  • Pubblicazioni

Dati Generali

Partecipanti

SCHIFANELLA Rossano   Responsabile scientifico  

Referenti (2)

COSTA Daniela Nicoletta   Amministrativo  
LO IACONO Cristiano   Amministrativo  

Dipartimenti coinvolti

INFORMATICA   Principale  

Tipo

Altri Progetti di ricerca internazionali/esteri con bando competitivo

Finanziatore

US ARMY ACC-APG-RTP W911NF
Ente Finanziatore

Partner

Università degli Studi di TORINO

Contributo Totale Ottenuto (EURO)

121.087,4€

Periodo di attività

Agosto 1, 2020 - Aprile 30, 2022

Durata progetto

21 mesi

Aree Di Ricerca

Settori (18)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2013)

PE6_7 - Artificial intelligence, intelligent systems, multi agent systems - (2013)

Settore INF/01 - Informatica

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici

Parole chiave (4)

  • ascendente
  • decrescente
Graphs Representational Learning
Machine learning
Teams modeling
Temporal Networks
No Results Found
  • «
  • ‹
  • {pageNumber}
  • ›
  • »
{startItem} - {endItem} di {itemsNumber}

Pubblicazioni

Pubblicazioni

Modeling teams performance using deep representational learning on graphs 
EPJ DATA SCIENCE
2024
Articolo
Open Access
Altmetric disabilitato. Abilitalo su "Utilizzo dei cookie"
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0