Data di Pubblicazione:
2022
Abstract:
Unprecedented 3D imaging of waves and sea ice floes from a moving icebreaker in the Antarctic marginal ice zone during a polar cyclone reveals a complex wind-plus-swell sea state, where contrasting ice-driven attenuation and wind forcing coexist.The marginal ice zone is the dynamic interface between the open ocean and consolidated inner pack ice. Surface gravity waves regulate marginal ice zone extent and properties, and, hence, atmosphere-ocean fluxes and ice advance/retreat. Over the past decade, seminal experimental campaigns have generated much needed measurements of wave evolution in the marginal ice zone, which, notwithstanding the prominent knowledge gaps that remain, are underpinning major advances in understanding the region's role in the climate system. Here, we report three-dimensional imaging of waves from a moving vessel and simultaneous imaging of floe sizes, with the potential to enhance the marginal ice zone database substantially. The images give the direction-frequency wave spectrum, which we combine with concurrent measurements of wind speeds and reanalysis products to reveal the complex multi-component wind-plus-swell nature of a cyclone-driven wave field, and quantify evolution of large-amplitude waves in sea ice.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Alberto Alberello; Luke G. Bennetts; Miguel Onorato; Marcello Vichi; Keith MacHutchon; Clare Eayrs; Butteur Ntamba Ntamba; Alvise Benetazzo; Filippo Bergamasco; Filippo Nelli; Rohinee Pattani; Hans Clarke; Ippolita Tersigni; Alessandro Toffoli
Link alla scheda completa:
Pubblicato in: