Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Correlation between satellite multispectral imagery and combine harvester CANbus data for corn yield assessment

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
Adoption of digital tools has led to relevant advancements in the agricultural sector. In particular, precision agriculture techniques have shown effective applications in farming practices. Integrating multisource data is a crucial task for improving agricultural management, and in this context the reliable assessment of crop yield by remote sensed imagery plays a relevant role. In this work, the correlation between satellite multispectral imagery and corn yield was investigated. Sentinel-2 satellite mission was selected as source of multispectral data, with 10-m spatial resolution and 4–6 days revisit time. A corn field in Ferrara was considered as a case study, with the dataset consisting of 17 multispectral images acquired in days with cloud coverage under 7%. The reference yield map was computed using CANbus data from a combine harvester, and its correlation with NDVI and GRVI indices was explored throughout the whole corn life cycle. In addition, the effect of applying a gaussian filter in the raster CY spatial distribution was explored. Results showed an overall good correlation between remotely sensed tiles and in-field farm data. The Pearson correlation coefficients showed a sharp increase during the vegetative stage of the crop (May and June), followed by a slowly decreasing plateau in July and August dates. Imagery from early June provided the highest correlations. The application of a gaussian filter in the CY map revealed an enhance in correlation of more than 25%. These results pave the path to the development of machine learning based methods exploiting multi-band-multi-temporal data for CY estimation.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
CANbus; Machine learning; Precision agriculture; Remote sensing; Yield assessment
Elenco autori:
Miralles, Gica Stefanescu; Biglia, Alessandro; Mattetti, Michele; Tortia, Cristina; Gay, Paolo; Comba, Lorenzo
Autori di Ateneo:
BIGLIA Alessandro
COMBA Lorenzo
GAY Paolo
Link alla scheda completa:
https://iris.unito.it/handle/2318/2072854
Titolo del libro:
Lecture Notes in Civil Engineering
Pubblicato in:
LECTURE NOTES IN CIVIL ENGINEERING
Series
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


LS9_7 - Environmental biotechnology and bioengineering - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Chimica e cibo

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

CIBO, AGRICOLTURA e ALLEVAMENTI - Tecnologie alimentari e microbiologia degli alimenti

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Energia e Fonti Energetiche

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Foreste e Legno

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Risorsa suolo e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1