Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

VAE-Surv: A novel approach for genetic-based clustering and prognosis prediction in myelodysplastic syndromes

Articolo
Data di Pubblicazione:
2025
Abstract:
Background and Objectives: Several computational pipelines for biomedical data have been proposed to stratify patients and to predict their prognosis through survival analysis. However, these analyses are usually performed independently, without integrating the information derived from each of them. Clustering of survival data is an underexplored problem, and current approaches are limited for biomedical applications, whose data are usually heterogeneous and multimodal, with poor scalability for high-dimensionality. Methods: We introduce VAE-Surv, a multimodal computational framework for patients’ stratification and prognosis prediction. VAE-Surv integrates a Variational Autoencoder (VAE), which reduces the high-dimensional space characterizing the molecular data, with a deep survival model, which combines the embedded information with the clinical features. The VAE embedding step prioritizes local coherence within the feature space to detect potential nonlinear relationships among the molecular markers. The latent representation is then exploited to perform K-means clustering. To test the clinical robustness of the algorithm, VAE-Surv was applied to the Genomed4all cohort of Myelodysplastic Syndromes (MDS), comparing the identified subtypes with the World Health Organization (WHO) classification. The survival outcome was compared with the state-of-the-art Cox model and its penalized versions. Finally, to assess the generalizability of the results, the method was also validated on an external MDS cohort. Results: Tested on 2,043 patients in the GenomMed4All cohort, VAE-Surv achieved a median C-index of 0.78, outperforming classical approaches. In addition, the latent space enhanced the clustering performance compared to a traditional approach that applies the clustering directly to the input data. Compared to the WHO 2016 MDS subtypes, the analysis of the identified clusters showed that the proposed framework can capture existing clinical categorizations while also suggesting novel, data-driven patient groups. Even tested in an external MDS cohort of 2,384 patients, VAE-Surv achieved a good prediction performance (median C-index=0.74), preserving the interpretability of the main clinical and genetic features. Conclusions: VAE-Surv enables automatic identification of patients’ clusters, while outperforming the traditional CoxPH model in survival prediction tasks at the same time. Applied to MDS use case, the obtained genetic-based clusters exhibit a clear survival stratification, and the application of the clinical information allowed high performance in prognosis prediction.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Deep Learning; Genetic-based clustering; Myelodysplastic syndrome; Survival analysis; Variational Autoencoder
Elenco autori:
Rollo, Cesare; Pancotti, Corrado; Sartori, Flavio; Caranzano, Isabella; D'Amico, Saverio; Carota, Luciana; Casadei, Francesco; Birolo, Giovanni; Lanino, Luca; Sauta, Elisabetta; Asti, Gianluca; Buizza, Alessandro; Delleani, Mattia; Zazzetti, Elena; Bicchieri, Marilena; Maggioni, Giulia; Fenaux, Pierre; Platzbecker, Uwe; Diez-Campelo, Maria; Haferlach, Torsten; Castellani, Gastone; Della Porta, Matteo Giovanni; Fariselli, Piero; Sanavia, Tiziana
Autori di Ateneo:
BIROLO Giovanni
FARISELLI Piero
ROLLO CESARE
SANAVIA Tiziana
Link alla scheda completa:
https://iris.unito.it/handle/2318/2071100
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2071100/1863750/cesare_VaeSurv_2025_1-s2.0-S0169260725000227-main.pdf
Pubblicato in:
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Journal
Progetto:
Genomics and Personalized Medicine for all though Artificial Intelligence in Haematological Diseases
  • Aree Di Ricerca

Aree Di Ricerca

Settori (21)


LS2_11 - Bioinformatics and computational biology - (2024)

LS7_14 - Digital medicine, e-medicine, medical applications of artificial intelligence - (2024)

PE3_15 - Statistical physics: phase transitions, condensed matter systems, models of complex systems, interdisciplinary applications - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

CIBO, AGRICOLTURA e ALLEVAMENTI - Tecnologie alimentari e microbiologia degli alimenti

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Genetica, Omica e Bioinformatica

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0